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Abstract: - This paper proposes extended formulations for the optimal Phasor Measurement Unit 
(PMU) placement problem in power systems with respect to voltage stability assessment for the cases 
of Zero Injection Buses (ZIBs), critical buses, and PMU redundancy. Modifications of the Binary 
Integer Programming (BIP) method to solve the proposed extended PMU placement problem are 
developed. The extension of the connectivity matrix and observability constraints are introduced on 
the basis of the analyses of the power system network, Modal Participation Factors (MPFs) from the 
Eigenvalues of the power flow Jacobian, and the introduction of redundancy for N-1 PMU outage for 
the observability of the critical buses. The performances of the modified method and algorithms were 
validated using the IEEE 14-bus, 30-bus, and 57-bus test networks. Furthermore, a comparison is 
made with previous results in the literature obtained using the BIP method. The simulation results 
show that the proposed method and algorithms provide a better framework for the strategic placement 
of PMUs in practical networks for monitoring the power system status and its margin to voltage 
collapse. In addition, the modified method and algorithms were shown to give fewer PMUs for 
redundancy against N-1 PMU outage when compared to the existing literature. 
 
Key-Words: - Critical bus, modal participation factor, optimal PMU placement, phasor measurement unit, 
synchrophasors, voltage stability assessment. 
 
1 Introduction 
Many Wide Area Monitoring, Protection, and 
Control (WAMPAC) schemes in power system 
networks are beginning to integrate time-stamped 
synchrophasor measurements from Phasor 
Measurement Units (PMUs). Consequently, there is 
the need to optimally locate these PMUs in order to 
reduce the cost of PMU integration and the amount 
of PMU data that needs to be processed or analysed.  

Optimal PMU Placement (OPP) has received 
considerable attention from researchers in recent 
years. However, a survey of the literature shows 
very few publications dedicated to the OPP problem 
with particular focus on voltage instability. Rather, 
most publications have focused on OPP for state 
estimation applications. Voltage instability is 
peculiar, so are the methods used in its analysis. 
Thus, it is necessary to take into cognizance the 
peculiarity of voltage instability during the planning 
and placement of PMUs, especially in segments of 
the power system network or critical buses prone to 
voltage instability. This is because through 

continuous analyses of measurements from the 
critical buses in the network, system operators 
would be able to detect the onset of voltage 
instability and consequently prevent voltage 
collapse and blackouts through timely remedial 
actions at the right locations. 

A power system is observable if the available 
measurements in the system are sufficient in the 
determination of the voltage magnitude and phase 
angle at each bus of the system. Power system 
observability has been examined by [1] under two 
broad categories: (i) Numerical observability; and 
(ii) topological observability. A system is 
numerically observable if the measurement matrix 
(H) is of full rank and connects all the nodes 
together.  Matrix H is a m x N matrix, where m is the 
number of voltage and current phasors, and N is the 
number of buses.  

The required computation for numerical 
observability can be obtained by using Gaussian 
elimination or triangular factorization of the 
Jacobian matrix, gain matrix, or heuristic matrix.  
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Another method is the computation of the null 
space of the gain or Jacobian matrices [2]. 
Topological observability relates to the availability 
of one or more measurement tree(s) of full rank 
connecting all the nodes together with either direct 
measurements from PMUs or calculated 
measurements. The calculated measurements can be 
obtained by applying Kirchhoff’s and Ohm’s laws.  

Synchrophasor measurements are measurements 
obtained from PMUs, and are capable of providing 
very accurate time-stamped phasors synchronized to 
an accurate time source such as the Global 
Positioning System (GPS). Synchrophasor 
measurements have been proposed for electric 
power system wide area monitoring, protection and 
control, parameter estimation, hybrid state 
estimation, etc. [3,4]. The requirements for optimal 
placement of PMUs for state estimation applications 
are different from that of voltage stability 
applications. Voltage stability applications require 
the monitoring of the system’s status, proximity to 
instability, and the critical/voltage weak areas of the 
system. This relates directly to the network 
topology. Therefore, algorithms for the optimal 
placement of PMUs for voltage stability assessment 
should consider the topological observability of the 
system with special consideration given to voltage 
weak areas/critical buses. 

Several works on Optimal Placement of PMUs 
(OPP) using mathematical programming, heuristic, 
and meta-heuristic methods have been covered in 
the literature. Methods for full network 
observability based on graph theory and tree search 
algorithm [5], Tabu Search (TS) algorithm [6], 
modified binary Particle Swarm Optimization (PSO) 
[7], probabilistic approach method [8], simulated 
annealing [9], etc. have been proposed. Methods 
based on binary integer programming have also 
been used [10-16].  

Although, integer programming may suffer from 
the problem of being trapped in local minima, the 
widely used simulated annealing, particle swarm 
optimization, Tabu search, and genetic algorithm 
based methods suffer from computational problems 
as they are iterative in nature, require longer 
convergence time, and their convergence depend 
upon the initial guess [14]. Thus, binary integer 
programming was used in this paper since this 
would save computational time and resources, and it 
is suitable for large-scale problems. 

Aside [9,16], none of the publications mentioned 
above considered voltage weak areas/critical buses 
in the formulation of their OPP problem. Most 
researchers focused on OPP for state estimation 
applications. The method by [9] considered OPP for 

voltage stability margin determination and was 
implemented using simulated annealing method. 
Similarly, a modal participation factor-based 
method combined with binary integer programming 
was proposed by the authors in [16].  
 
The contributions of this paper include:  
• The determination of the minimum number of 

PMUs and the optimal location to site the PMUs 
using the critical bus information computed 
from the eigenvalues and eigenvectors of the 
Jacobian matrix of the system’s power flow. 

• The consideration of the effect of zero injection 
and critical buses on OPP using new rules in the 
determination of the connectivity matrix as 
proposed in Sections 3 and 4. Extended 
formulations of the OPP problem are proposed 
for the case studies involving the consideration 
of the impact of the critical buses on voltage 
collapse and the impact of zero injection buses 
on the PMU placement sites.  

• An extended formulation of the OPP problem 
for measurement redundancy at the critical 
buses for a single N-1 PMU outage is proposed. 

• The impact of increased loading on the bus 
participation factors and the critical buses were 
investigated. 

• A detailed comparison with previous results in 
the literature is presented.   

 
The observability rules for full topological 
observability used in this paper include the 
following [4,11]: 
Rule 1: A bus with PMU is regarded as directly 
observable.  
Rule 2: The bus voltage at a remote end of a 
transmission line can be calculated if the bus voltage 
and current phasors of the local end are known. 
Rule 3: If the voltage phasors at both ends of a line 
are known, current phasor of the line can be 
calculated by applying Kirchhoff’s Current Law 
(KCL). 
Rule 4: KCL can be applied to a Zero Injection Bus 
(ZIB) to calculate the unknown current phasors for a 
branch if the current phasors for all the other 
adjacent branches are available, since the net 
injection equals zero. 
Rule 5: The voltage phasor of a ZIB can be 
calculated by using node equations if the voltage 
phasors of the incident buses to the ZIB are 
available. 

The rest of this paper is structured as follows: 
Section 2 presents the basic formulation of the OPP 
problem and the theory of Binary Integer 
Programming. Extended rules and formulation for 
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the OPP problem considering ZIBs is described in 
Section 3. Section 4 gives the modal participation 
factor algorithm and the formulation of the OPP 
problem considering critical buses. The OPP 
problem formulation for the consideration of both 
ZIBs and critical buses are presented in Section 5, 
while Section 6 is on the OPP formulation for the 
case of N-1 PMU outage. Section 7 describes the 
test systems used, and the various case studies 
considered. Section 8 presents and discusses the 
results obtained. Section 9 summarizes the 
contribution of this paper.  
 
 
2 OPP Problem Formulation 
2.1 Basic OPP formulation 
The Optimal PMU Placement (OPP) problem 
considered in this paper is aimed at the 
determination of the minimum number of PMUs 
and the optimal locations required to achieve 
complete topological observability for the purpose 
of monitoring the system’s stability status and the 
margin to voltage collapse.  
The objective function of this OPP problem is the 
minimization of the number of PMUs required for 
complete system observability. Thus, it is required 
that each bus is observed by a minimum of one 
PMU. The basic formulation of the OPP problem 
using Binary Integer Programming (BIP) approach 
for any N-bus power system can be mathematically 
described as [11]: 

   ∑=
=

N

k
k

x
xS

1
min     (1) 

subject to: 
bAx ≥      (2)                                                                

]...[ 21 xxxx N
T=                    (3)                          

where }1,0{=xk , Nk ,1= , ℜ∈ NXNA  is the 
connectivity matrix of the considered system 
obtained from the binary transformation of the bus 
admittance matrix, N is the number of buses in the 
network, xk  is the PMU placement variable that 
equals 1 if a PMU is sited at bus k, and 0 if 
otherwise.                                       
The connectivity matrix is defined as 1=aij  if the 
node i and j are linked or if .ji =  0=aij if 
otherwise. ℜ∈ Nx  is the vector of the possible 
location of the PMUs. 
The vector ℜ∈ Nb is given as: 
   ]1...11[ Tb =     (4)
                         
  

Example: 
The objective function for the OPP problem for the 
IEEE 14-bus system [17] shown in Fig. 1 can be 
formulated as: 

}...{min 1421 xxx +++  
subject to the following observability constraints for 
buses 1-14 respectively: 

15211 ≥++= xxxf  
143 5212 ≥++++= xxxxxf  

 
 

1141314 9 ≥++= xxxf  
]1...11[ Tb =  

 

 
(a) 

 

ZIBi, i = 7

gv, v = 3 

gv, v = 9 

ql, l = 4 

 

 

gv, v = 5

gv, v = 2

 
(b) 

Fig. 1. IEEE 14-bus system (a) full network [17]; 
and (b) segment showing ZIB 7, incident bus 4, and  

buses connected to bus 4 (buses 2, 3, 5, 9) 
 
 
The first observability constraint for Bus-1 ( f 1 ) 
implies that at least one PMU must be located at 
either of buses 1, 2, or 5 in order to achieve 
complete observability. The second observability 

...
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constraint for Bus-2 ( f 2 ) implies that at least one 
PMU must be located at either of buses 1, 2, 3, 4, or 
5. The connectivity matrix A  is then obtained from 
the observability constraints given above. 
The obtained optimal solution for this example is: 

]00000101100010[ Tx =  
Thus, PMUs would need to be installed at buses 2, 
6, 7, 9 for complete topological observability. 
 
2.2 Binary integer programming 
The Binary Integer Programming (BIP) method 
used in this paper for the solution of the modified 
OPP problems is based on the branch-and-bound 
algorithm. The branch-and-bound algorithm divides 
the feasible solution region into sub-problems by 
searching for the optimal binary integer solution, 
updating the best binary integer feasible points 
found, and verifying that the best integer feasible 
solution has been obtained [18,19].  

The branch-and-bound algorithm is implemented 
in two parts.  The branch part of the algorithm 
involves the creation of a search binary tree and the 
addition of constraints repeatedly. This branching 
step chooses a non-integer variable x j . The 
constraint 0=x j is added to form a left branch, 
while the constraint 1=x j  is added to form the 
right branch. The added constraints form the nodes 
which are subsets of a set. The sets are candidate 
solutions of the search space. For each node, a 
Linear Programming (LP) relaxation problem is 
solved using the constraints at that node. The 
decision to branch or proceed to another node 
depends on the outcome of the LP relaxation 
problem. 

The bound part of the algorithm uses its 
bounding step to update the lower and upper bounds 
on the objective function within a given subset of 
the set for pruning unnecessary branches. This 
implies that if the lower bound of a node is greater 
than the upper bound of another node, the former is 
discarded from the search. 

Two strategies are implemented for the selection 
of the branch variable in the search tree in 
MATLAB. The first strategy is to choose the 
variable with the minimum integer infeasibility, 
while the second strategy is to choose the maximum 
integer infeasibility whose value is closer to a 
predetermined value [19]. 

Similarly, two strategies are defined in the 
selection of the next node to search. These are the 
depth-first search strategy and the best-node first 
search strategy [19]. For the depth-first strategy, the 
algorithm chooses an unexplored child node a level 
down the tree. Alternatively, the algorithm moves to 

the node one level up in the tree and chooses a child 
node one level down from that node. The best-node 
search strategy chooses the node with the lowest 
bound on the objective function. 
 
 
3 Modified OPP Problem 
Formulation Considering Zero 
Injection Buses (OPPZB) 
3.1 Extended rules considering zero 
injection buses 
Zero Injection Buses (ZIBs) are buses with no 
power or current injection. They are usually transfer 
buses and do not have a generator or load connected 
to them. The number of PMUs required for power 
system observability can be substantially reduced by 
considering ZIBs. This is because Kirchhoff’s 
Current Law (KCL) can be used to calculate the 
current measurements in adjacent branches as given 
in Rule 4 in Section 1. The ZIBs in a network can 
generally be obtained from the bus data parameters 
of the power system. 

If a zero injection bus i has k buses connected to 
it, the number of buses at that node equals k + 1. 
Applying Kirchhoff’s Current Law (KCL), if k 
number of buses has phasors that are observable, the 
remaining bus with zero injection automatically 
becomes observable [4,11].  
The connectivity matrix of the system with ZIBs 
would need to be modified. The modified 
connectivity matrix would include the connectivity 
matrix Zb  of the ZIB.  

The modification of the connectivity matrix is 
based on the following rules proposed in this paper: 
Rule 1: The OPP constraints are formulated to 
eliminate the placement of PMU at the zero 
injection buses. This is because the location of a 
PMU at a zero injection bus does not give any 
additional information. 
Rule 2: A zero injection bus would be represented 
by a variable of zero in the connectivity matrix A  to 
obtain a modified connectivity matrix Az . The ZIB 
would then be replaced by a merged fictitious-bus 
comprising of the ZIB and its associated incident 
buses in the connectivity matrix Zb . A variable of 
zero is used since the effects of the ZIB are already 
accounted for by the new constraints as given in 
Rule 4.  
Rule 3: All constraints of the adjacent buses 
incident to a zero injection bus would be assigned a 
negative variable of 1 for their coefficient 
parameters in the connectivity matrix Zb . 
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Rule 4: The network topology for buses incident to 
a zero injection bus would be transformed through 
bus merging. This transformation is only intended 
for the formulation of the constraint for a fictitious-
bus comprising of the ZIB and the incident buses 
incident to it. 
Rule 5: Vector b  would be modified according to 
Rule 4. For the modified vector b , the coefficients 
of the fictitious merged buses corresponding to the 
ZIB would be set equal to the number of buses 
incident to the ZIB, and the coefficients for the 
incident buses would be set equal to zero. The rest 
of the coefficients have value equal to 1 as in the 
basic OPP problem. 

From the rules given in Section 1, it can be 
deduced that an unknown bus voltage can be 
calculated if the terminal voltage at the other end 
and the branch current phasor are known. Therefore, 
the constraints for the incident buses to the branch 
can be merged into a single constraint. 
 
3.2 Modified OPP problem formulation 
considering ZIBs (OPPZB) 
The same formulation of the OPP problem proposed 
in Section 2 applies, but with the connectivity 
matrix and the vector b modified according to the 
above rules as follows: 

∑=
=

N

k
k

x
xS

1
min     (5)

 subject to:     
bxA ≥                   (6)                                                 

]...[ 21 xxxx N
T=    (7)            

                        ]...[ 21 Nbbbb T=                       (8)                                                                                                             

where }1,0{=xk , Nk ,1= . ℜ∈ NXNA  the modified 
connectivity matrix ( ZAA bz += ), and the vector 

bk , Nk ,1=  are determined according to Rules 1-5. 
A flowchart for the implementation of the ZIB rules 
is given in Fig. 2. 
where 1),1,,( −== PvgqZ qlvlb , jl i,1= , 

∑=
=

j

l
lbb

i
uqZliZ

1
),(),( , ri ,1= , Nu ,1= , 

:),(:),( iAiA = , [ ]bbbbb Niji
T

i i
...: 1,,11 +−= . 

ql  is the lth incident bus connected to the ith Zero 
Injection Bus (ZIB), gv  is the vth bus connected to 
the lth incident bus, Pql  is the number of buses 
connected to the incident bus ql , ji  is the number 
of incident buses connected to the ith ZIB. u  is the 

uth bus in the network, r is the number of ZIBs, N  
is the number of buses in the network (Fig. 1b). 

Read bus 
parameters

Construct the 
modified vector b¯ 
according to Rule 5

Print  
 A¯ & b¯

No

Start

Replace the 
connectivity 

parameter for ZIB  i 
with 0 in Az

Is 
bus i a ZIB?

`

Print A & b

Go to: 
Figure 4

Form a merged fictitious bus 
with connectivity parameters 

for the ZIB & its incident 
buses Zb(i,l)

Construct modified 
connectivity matrix 

 _
                A = Az + Zb

Construct connectivity 
matrix A & vector b            

Assign negative variable 
1 for the incident buses 

to the ZIB in Zb(ql,gv)

Go to: 
Figure 4

Yes

Construct the 
modified vector ¯b(i) 
according to Rule 5

Construct the matrix Zb for the 
merged fictitious bus with 

connectivity parameters for the 
ZIB & its incident buses 

i = i + 1 ¯A(i,:)  =  A(i,:)

i = i + 1

Fig. 2. Flowchart of the proposed ZIB rules 
 
 

Using the IEEE 14-bus network as an example, 
bus-7 is identified as a zero injection bus based on 
the bus parameters of the network.  
The constraints corresponding to this can be derived 
for all the buses incident to bus-7 as follows: 

 
 

198747 ≥+++= xxxxf  
1878 ≥+= xxf  

11410979 4 ≥++++= xxxxxf  
 

The transformation of the topology as a result of 
the merging of the buses incident to bus 7 is given 
by the constraint for the fictitious bus f Zb7 : 

33243 14109875432

98747

≥++++++++=

+++=

xxxxxxxxx
fffff bZ  

 
For the example from Section 2, and on the basis of 
Rules 1-5, the corresponding connectivity matrices 
are: 
 

1974 5324 ≥+++++= xxxxxxf
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The modified vector b  is given by: 

]11111003110111[ Tb =  
 
Solving the optimization problem using the obtained 
matrix A  results to an optimal solution of: 

]00000100100010[ Tx =  
 
Thus, PMUs would need to be installed at buses 

2, 6, 9 for complete topological observability. No 
PMU is installed on bus 7 (ZIB) and the total 
number of PMUs to obtain full observability is 
reduced. 
 
 

4 Modified OPP Problem Formulation 
Considering Critical Buses (OPPCB) 
4.1 Modal participation factor algorithm 
The derivation of Modal Participation Factor (MPF) 
in power system is based on the calculation of the 
Jacobian matrix of the power flow. The eigenvalues 
of the Jacobian matrix of the power system load 
flow are associated with the system’s mode which 
gives the relationship between reactive power and 
the bus voltages.  

The modes with the smallest eigenvalues are the 
most prone to voltage instability. Similarly, the 
eigenvectors describe the mode shape and indicate 
the mechanism of voltage instability in terms of the 
voltage weak areas prone to instability. 
The considered system Jacobian can be obtained 
from the linearized steady-state power flow 
equations given by [20]: 









∆
∆









=








∆
∆

VJJ
JJ

Q
P

QVQ

PVP θ

θ

θ   (9)                                                     

JPθ, JPV, JQθ, JQV are the Jacobian matrices for the 
real and reactive power sensitivities with respect to 
voltage angles and voltage magnitudes. ∆P and ∆Q 
are the increments in real and reactive powers 
respectively, ∆ϴ and ∆V are increments of the angle 
and voltage. 
 In order to focus the study on the reactive power 
demand and supply problem of the power system, as 
well as to minimize computational effort by 
reducing the dimensions of the Jacobian matrix J, 
the real power increment is assumed to be zero. This 
is supported by the fact that voltage collapse 
primarily occur as a result of reactive power deficit 
leading to loss of voltage control [20].  Thus, the 
angle increment is expressed as a function of the 
voltage increment. This permits the evaluation of 
the bus voltage increment (∆V) and reactive power 
increment (∆Q) for different operating conditions.  
The reduced Jacobian resulting from this is given 
by: 

                                              
VJJ PVP ∆+∆= θθ0              (10)                   

From Eqs. (9) and (10) above, 
VJJ PVP ∆−=∆ −

θθ 1     (11)                 
 VJJQ QVQ ∆+∆=∆ θθ             (12)               

Substituting for ∆θ in Eq. (12) 
VJVJJJQ QVPVPQ ∆+∆−=∆ − )( 1

θθ       (13)  
The reduced Jacobian is given by: 

JJJJJ PVPQVR Q θθ
1−−=           (14)                     

QJV R ∆=∆ −1                          (15) 
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The matrix JR represents the linearized relationship 
between the incremental changes in the bus voltage 
(∆V) and the bus reactive power injection (∆Q).  
Eigenvalue analysis of JR results in the following 
expression: 
   ΦΛΓ=JR             (16) 
where Φ is the right eigenvector matrix of JR, Γ is 
the left eigenvector matrix of JR, Λ is the diagonal 
eigenvalue matrix of JR. 
The right eigenvector is said to give the mode shape 
which defines the relative activity of the state 
variables when a particular mode is excited. The left 
eigenvector weighs the contribution of this activity 
to this mode [20]. 
Eq. (16) can be re-written as: 

ΓΛΦ= −− 11JR               (17)                                                   
From Eqs. (15) and (17), 

QV Γ∆ΛΦ=∆ −1               (18)                                                              
if I=ΓΦ ,  
After left multiplication of Eq. (18) by Γ and since 
the geometrical product between the right and left 
eigenvectors is equal to the identity matrix I  [20], 
Eq. (19) is obtained. 

QV Γ∆Λ=Γ∆ −1             (19)                                                                     
The modal voltage variations ( Vv Γ∆= ) can be 
related to the modal reactive power variation 
( Qq Γ∆= ):  

qv Λ= −1             (20)                                                                            
The relative modal participation factor of bus k in 
mode i is defined as [24]: 
 ΓΦ= ikkikiP * ,    Ni ,1=      Nk ,1=            (21)    
where Pki is the modal participation factor of bus k 
to mode i, Φki is the right eigenvector matrix of JR of 
bus k for the ith mode, Γik is the left eigenvector 
matrix of  JR of bus k to the ith mode. 

High values of Pki indicate the buses most prone 
to voltage collapse. Thus, signifying the critical 
buses which need to be monitored with PMUs. The 
critical buses identification used in this paper is 
based on the bus modal participation factors derived 
from the smallest eigenvalues and their associated 
eigenvectors of the system’s reduced Jacobian 
matrix JR close to the point of voltage collapse. 
The consideration of zero injection buses in the OPP 
problem formulation results to the use of fewer 
PMUs in order to achieve complete observability of 
the power system. PMU placement at 
sensitive/critical buses in the power system provides 
measurements from critical buses in the network.  

These measurements can be used to provide the 
power system status (situational awareness) as the 
system operating conditions changes. The results 

from [16] show that the computation time for the 
OPP solution incorporating the critical buses 
information was reduced when compared to that 
without critical buses consideration. 
Fig. 3 shows the process involved in the calculation 
of the modal participation factor. 
 

Print
Critical Buses

End

Run Power System 
Load Flow

Start

Calculate eigenvalue 
of the System Modes 

from the Jacobian 
Matrix

Calculate MPF 
using Eq. (17)

Calculate Reduced 
Jacobian from Load Flow 

using Eq. (10)

 
Fig. 3. Flowchart of the modal participation factor 

algorithm 
 
4.2 Formulation of the modified OPP 
problem considering critical buses (OPPCB) 
An equality constraint incorporating the information 
of the critical buses as described in Subsection 4.1 is 
used as an additional constraint in the OPP problem 
formulation in this subsection. This is done in order 
to assign a higher priority to the critical buses in the 
system. 
The proposed formulation of the problem is given 
as: 

∑=
=

N

k
k

x
xS

1
min              (22)                                    

subject to:    
bAx ≥                        (23)                                             

             bxA
~~

=               (24) 
]...[ 21 xxxx N
T=              (25)            

]...[
~~~~

21 Nbbbb
T

=                       (26)                                        

where }1,0{∈xk ,  }1,0{
~
∈kb , Nk ,1= . 
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The same formulation used in Subsection 2.1 

applies here except for bxA
~~

=  which represents the 
constraints for the critical buses. The connectivity 

matrix for the critical buses ℜ∈ NXNA
~

 is defined as 
1~ =aij

 if i is connected to j and bus i  is a critical 

bus. If otherwise, 0~ =aij
. Similarly, 1

~
=kb  if bus k  

is a critical bus. If otherwise, 0
~
=kb , ℜ∈ Nb

~
.  

 
The identification of the critical buses in this 

paper is based on the bus modal participation factors 
derived from the smallest eigenvalues and the 
associated eigenvectors of the system’s reduced 
Jacobian matrix JR obtained using Eq. (21). The 
critical buses are the buses with the highest 
participation factors. 
The equality constraint used in Eq. (24) is a hard 
constraint. This requires that the constraint is 
satisfied by ensuring that the critical buses are 
observable in the OPP solution. 

Using the IEEE 14-bus network as an example, 
the constraints for the critical buses (Buses 9, -10, 
and -14) are given by: 

1149 10749 =++++= xxxxxf  
11110910 =++= xxxf  

11413914 =++= xxxf  

The vector b
~

 for the equality constraint and the 

matrix A
~

 are given as: 
]10001100000000[

~ Tb =  

 
The obtained optimal solution is: 

]00000110100010[ Tx =  
 
Thus, PMUs would need to be installed at buses 2, 
6, 8, 9 for complete topological observability. 

5 Modified OPP Problem Formulation 
Considering ZIBs and Critical Buses 
(OPPZCB) 
The proposed OPP problem formulation for a case 
considering the critical buses and the zero injection 
buses (OPPZCB) is given below: 

∑=
=

N

k
k

x
xS

1
min               (27)         

subject to: 
bxA ≥                             (28)                                      

   bxA
~~

=               (29) 
    ]...[ 21 xxxx N

T=                       (30)                                              

    ]...[ 21 Nbbbb T=                     (31) 

   ]...[
~~~~

21 Nbbbb
T

=             (32)                                  

where }1,0{∈xk ,  }1,0{
~
∈kb , bk , Nk ,1=  are 

determined as in Section 3. 
The same formulation used in Section 4 applies 

here except for the introduction of the modified 
connectivity matrix ℜ∈ NXNA  formulated for the 
case involving zero injection buses. The 

connectivity matrix for the critical buses ℜ∈ NXNA
~

 
is as given in Section 4.  
 

 
6 OPP Problem Formulation 
Considering Single PMU Outage, 
Critical Buses, and ZIBs 
It is desirable that measurements at the critical buses 
do not cease in the event of a PMU outage, loss of 
communication network, or loss of time 
synchronization. This is because during 
emergency/contingency situations, the most 
important measurements are the measurements from 
the critical buses in the system. In reality, the 
measurements from the critical buses are adequate 
for providing situational awareness of the power 
system. 

The critical bus equality constraint in the OPP 
problem given in Sections 4 and 5 can be modified 
to ensure that priority is given to the critical buses 
during PMU placement such that each critical bus 
have at least one PMU observing it in the event of a 
N-1 PMU outage. This is done by changing the 

vector  }1,0{
~
∈kb in Sections 4 and 5 to }2,0{

~
∈kb . 

This implies that each critical bus is monitored by at 
least two PMUs during normal operating conditions, 
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and by at least one PMU during a N-1 PMU outage.  
The proposed OPP problem formulation for the 
OPPZCB case (Section 5) for a single PMU outage 
with respect to voltage stability assessment is given 
below: 

∑=
=

N

k
k

x
xS

1
min               (33)        

subject to: 
bxA ≥                             (34)                                                

bxA
~~

=                          (35) 
]...[ 21 xxxx N
T=                     (36)                                                    

    ]...[ 21 Nbbbb T=                     (37) 

   ]...[
~~~~

21 Nbbbb
T

=                        (38)     

where }1,0{∈xk ,  }2,0{
~
∈kb , bk , Nk ,1=  are 

determined as in Section 3. The same formulation 
applies for the case of OPPCB (Section 4) except 

for the modification of the equality constraint kb
~

.  
 
 
7 Test Systems and Case Studies 
7.1 Test system 
The proposed algorithm is tested on the IEEE-14 
bus, IEEE-30 bus, and IEEE 57-bus benchmark test 
systems. The implementation of the algorithms was 
carried out using MATLAB Version 7.12.0.635 
(R2011a) and MATLAB Global Optimization 
Toolbox. 
 
7.2 Case studies 
Case studies were simulated for the OPP problem on 
the test systems considered above. 
These case studies include the following: 
a. Minimizing the number of PMUs for complete 
topological observability with and without zero 
injection buses. 
b. Minimizing the number of PMUs for complete 
topological observability with and without zero 
injection buses, and with the critical buses as an 
additional constraint to the optimization problem. 
The calculations are performed according to the 
algorithms in Fig. 4.  
c. Minimizing the number of PMUs for complete 
topological observability with and without zero 
injection buses, and with the critical buses for N-1 
PMU outage.  
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Fig. 4. Flowchart of the proposed algorithm 

8 Results and Discussion 
8.1 Results 
Table 1 gives the participation factors obtained for 
various incremental loading of the load buses in the 
IEEE 14-bus system. From Table 1, the highest 
participation factor for load level 1 (steady-state 
condition) is 0.3287 (bus 14).  

All buses with participation factors greater than 
or equal to the given threshold ξ cr

are identified as 

the critical buses, where  ξ cr
= 50 % of the highest 

participation factor obtained for the test system.  

4 5 7 9 10 11 12 13 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bus Nr.

P
ar

tic
ip

at
io

n 
Fa

ct
or

ξcr

         (a) 

WSEAS TRANSACTIONS on POWER SYSTEMS A. C. Adewole, R. Tzoneva

E-ISSN: 2224-350X 372 Volume 13, 2018



0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

Bus Nr.

P
ar

tic
ip

at
io

n 
F

ac
to

r

ξcr

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Bus Nr.

P
ar

tic
ip

at
io

n 
F

ac
to

r

ξcr

    (b)                (c) 
Fig. 5. Bus modal participation factor for (a) IEEE 14-bus test system; (b) IEEE 30-bus test system; and IEEE 

57-bus test system 
 

Table 1 
Participation factor for IEEE-14 bus test system under load increase scenario 

Table 2 
OPP Results for the various problem formulation in Sections 3, 4, and 5 

Test System Zero Injection 
Buses 

OPPZB Placement 
Using BIP (Section 3) 

Critical Buses OPPCB Placement 
Using BIP (Section 4) 

OPPZCB Placement 
Using BIP (Section 5) 

IEEE 14-bus 7 2, 6, 9 9, 10, 14 2, 6, 8, 9 2, 10, 13 

IEEE 30 -bus 6, 9, 11, 25, 28 1, 5, 10, 12, 19, 23,  
27 

26, 29, 30 2, 4, 6, 10, 11, 12, 15, 
18, 25, 27 

1, 2, 12, 16, 19, 21, 26, 
27 

IEEE 57-bus 4, 7, 11, 21, 22, 
24, 26, 34, 36, 37, 
39, 40, 45, 46, 48 

1, 6, 10, 15, 20, 25, 
29, 32, 41, 49, 54 

25, 30, 31, 32, 33 1, 6, 15, 17, 19, 22, 25, 
27, 32, 36, 38, 41, 46, 

51, 52, 55, 57 

1, 6, 10,13, 19, 25, 29, 
32, 41, 49, 54 

Table 3 
Comparison of OPP results with results in the literature with respect to the number of PMUs 

Test System OPPZB 
Placement Using 
BIP (Section 3) 

OPPZCB Placement 
Using BIP (Section 

5) 

[10] [12] [13] 

   
IEEE 14-bus 3 3 3 3 3 

IEEE 30 -bus 7 8 7 7 N/A 
IEEE 57-bus 11 11 12 11 14 

 
 
 
 
 
 

 
Load Level                          Bus 4 5 7 9 10 11 12 13 14 

1. 
Participation Factor (λ = 0.0) 0.0088 0.0046 0.068 0.2020 0.2380 0.1030 0.0169 0.0311 0.3287 

2. Participation Factor (λ = 0.1) 0.0093 0.0049 0.0680 0.2038 0.2379 0.1004 0.0159 0.0301 0.3288 
3. Participation Factor (λ = 0.2) 0.0098 0.0054 0.0696 0.2059 0.2380 0.0977 0.0150 0.0293 0.3296 
4. Participation Factor (λ = 0.3) 0.0107 0.0062 0.0703 0.2082 0.2371 0.0946 0.0140 0.0284 0.3304 
5. Participation Factor (λ = 0.4) 0.0122 0.0076 0.0720 0.2116 0.2362 0.9050 0.0128 0.0272 0.3302 
6. Participation Factor (λ = 0.5) 0.0156 0.0108 0.0744 0.2168 0.2343 0.0844 0.0112 0.0254 0.3271 
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Table 4 
Comparison of OPP results with results in the literature for the case of a single PMU outage 

Test 
System 

OPPCB Placement 
(Critical Buses Only) 

OPPZCB Placement 
(Critical Buses & ZIB) 

Nr. of PMUs for 
OPPCB Placement 

(Critical Buses Only)  

Nr. Of PMUs for 
OPPZCB 

Placement (Critical 
Buses & ZIB) 

[10]                 [12]                     [13]                    

IEEE 
14-bus 

2, 7, 9, 11, 13 2, 9, 10, 13 5 4 7 7 7 

IEEE  
30 -bus 

2, 4, 6, 10, 11, 12, 15, 20, 
25, 26, 27, 29 

N/A 12 N/A 17 15 N/A 

IEEE 
57-bus 

1, 2, 6, 13, 19, 22, 25, 27, 
30, 32, 33, 36, 39, 41, 44, 

47, 51, 52, 55 

1, 6, 10,15, 20, 25, 29, 
30, 32, 33, 41, 49, 54 

19 13 26 26 29 

 
Rows 2-6 of Table 1 give the result obtained for 

the IEEE 14-bus test system for real power and 
reactive power load increments with a constant 
power factor (p.f), for up to 50 % (λ = 0.5), where λ 
is the loading factor for the load increments.  

Figs. 5a-5c give the plots of the participation 
factors calculated according to Eq. (21) for the test 
systems used.  
Only buses 9, 10, and 14 have participation factors 
above the given threshold. Therefore, the critical 
buses for the IEEE 14-bus test system are buses-9, 
10, and 14. The impact of increased system loading 
on the bus participation factors obtained for load 
level 1 (steady-state conditions) was carried out. 

Table 2 presents the result for the optimal PMU 
locations for the OPP problem formulations for the 
OPPZB case as given in Section 3, OPPCB case 
(Section 4), and the OPPZCB case (Section 5). 
Table 3 presents the comparison of the number of 
PMUs obtained for the OPPZB and OPPZCB 
problem formulations with the results available in 
some previous publications.  
Table 4 gives the results for the PMU placement for 
the case when a single PMU outage is considered 
for the OPPCB and OPPZCB problem formulations, 
and their comparison with the results available in 
some previous publications where the critical buses 
were not used.  
 
8.2 Discussion 
 
From the results obtained as given in Table 1, it was 
observed that the increase in system loading in all 
the load buses did not have any effect on the initial 
critical buses obtained as demonstrated with the 
IEEE 14-bus system.  

Comparison of the results in Table 2 shows that 
the number of PMUs required for complete 
observability is reduced when zero injection buses 
were considered in the problem formulation. The 
number of PMUs required for complete system 
observability for the IEEE 14-bus test system when 

zero injection buses are considered reduces to 3. 
Similarly, for the IEEE 30-bus test system, the 
number of PMUs reduces from 10 to 7.  
For the IEEE 57-bus test system, the number of 
PMUs required reduces to 11 from the previous 17 
for the base case where zero injection buses and the 
critical buses information were not considered. 
 
The optimal locations obtained for the base case 
without ZIBs and critical buses are: 
 

• IEEE 14-bus test system: {2, 6, 7, 9} 
• IEEE 30-bus test system: {4, 7, 9, 10, 12, 

18, 24, 25, 27, 28} 
• IEEE 57-bus test system: {1, 4, 6, 13, 19, 

22, 25, 27, 29, 32, 36, 39, 41, 45, 47, 51, 
54} 

From the results obtained for the three test 
systems, it was observed that the application of the 
proposed rules in Section 3 resulted to the 
elimination of the placement of PMUs at the Zero 
Injection Buses (ZIBs) for OPP problems involving 
the consideration of the ZIBs. This is in accordance 
with Rule 1 proposed in Section 3, and is due to the 
fact that the placement of PMUs at the zero 
injection buses does not provide any additional 
information. Thus, the placement of a PMU at the 
ZIBs is an inefficient way of utilising the limited 
PMUs available. With the correct placement of 
PMUs at the critical load buses or non-ZIBs, other 
system information from the power system can 
easily be streamed by the PMUs as analogue 
measurements (real and reactive powers) and digital 
bits (circuit breaker/disconnector status 
information).  

From the foregoing, the effect of combining ZIBs 
and the critical buses in the OPP problem 
formulation and solution include: i) the reduction in 
the computation time of the OPP solution as shown 
by the authors in [16]; ii) improved computational 
efficiency since the number of iterations required is 
considerably reduced [16]; iii) allows for emphasis 
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on the power system’s critical buses especially 
during phased (multi-stage) PMU placement; iv) 
reduction in the number of PMUs required for 
complete topological observability; and v) The 
critical buses are given priority in the formulation of 
the OPP problem. This ensures that the critical 
buses are covered by a minimum of two PMUs 
during steady-state conditions, and by at least one 
PMU during a single N-1 PMU outage. Thus, the 
critical buses are observable for N-1 PMU outage 
due to the loss of measurements from Voltage 
Transformers (VTs)/Current Transformers (CTs), 
PMU failure, loss of communication channel, or 
loss of time synchronization.  

Consequently, redundant measurements relating 
to a particular critical bus can be used for bad data 
detection and measurement verification since two 
sources of measurements are simultaneously 
obtainable from that critical bus. Also, comparisons 
done with the existing methods in the literature for a 
single PMU outage showed that fewer additional 
PMUs are required as shown in Table 4. For 
example, a 43 % reduction in the total number of 
PMUs for a single PMU outage was recorded for the 
IEEE 14-bus test system when compared with [10], 
[12-13].  

9 Conclusion 
This paper extends the findings from the authors’ 
paper [16] and investigates the proposal of new 
formulations and modification of the methods of 
solution of the OPP problem for voltage stability 
assessment in power systems. It incorporates the 
impact of the critical/voltage weak buses and the 
buses with zero injection on the full observability of 
the system. 

Five OPP problems were formulated and solved 
using the Binary Integer Programming approach. 
This includes: 

• Basic formulation from available methods 
existing in the literature; and 

• New modified formulations with the 
consideration of Zero Injection Buses 
(ZIBs), incorporating the critical buses 
obtained from modal participation factors, 
and PMU outage in the structure of the OPP 
problem. 

The application of the proposed algorithm for 
ZIBs in the study networks showed that PMU 
placement on a ZIB was automatically eliminated. 
This is an advantage since ZIBs do not provide any 
additional information compared to that obtainable 
from the load buses. Thus, additional information 
available at the load buses can be streamed by the 
PMUs as analogue measurements or binary 

information. 
The proposed algorithm identifies the critical 

buses prone to voltage instability and uses this as 
one of the constraints for the optimization problem. 
This is aimed at increasing the accuracy of 
synchrophasor-based voltage stability assessment 
schemes to prevent voltage instability/voltage 
collapse through the identification of the weak areas 
of the system during the PMU placement stage. A 
problem formulation for a single PMU outage 
shows that redundancy can easily be provided at the 
critical buses in the power system with fewer PMUs 
when voltage stability assessment is considered, 
rather than with most of the existing methods where 
state estimation is the objective. Simulation results 
show that the proposed OPP problem formulations 
and their solutions are simple, effective, and can be 
used for the optimal placement of PMUs in practical 
systems, such that continuous situational awareness 
of the critical buses is provided even when there is 
an outage of the main PMU covering a critical bus. 
Also, faster convergence rate with less iteration 
results to less computational time. Therefore, the 
proposed method is suitable for large power system 
networks.  
Future research work would consider the 
implementation of the proposed method for wide 
area voltage stability assessment/monitoring. 
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